sat suite question viewer
Algebra
/ Linear functions
Difficulty: Hard
For the function , for all values of , where is a positive constant. If , what is the value of ?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
Explanation
The correct answer is . It's given that for all values of , where is a positive constant, and . Therefore, for the given function , . Dividing both sides of this equation by yields . Substituting for in the equation yields , or . Since itβs given that , substituting for yields . Adding to both sides of this equation yields . Multiplying both sides of this equation by yields . Dividing both sides of this equation by yields . Note that 2/43, .0465, 0.046, and 0.047 are examples of ways to enter a correct answer.